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Abstract— We present a roadmap to guide European 
research efforts towards a socially responsible big data economy 
that maximizes the positive impact of big data in environment 
and energy efficiency. The goal of the roadmap is to allow 
stakeholders and the big data community to identify and meet 
big data challenges, and to proceed with a shared understanding 
of the societal impact, positive and negative externalities, and 
concrete problems worth investigating. It builds upon a case 
study focused on the impact of big data practices in the context of 
Earth Observation that reveals both positive and negative effects 
in the areas of economy, society and ethics, legal frameworks and 
political issues. The roadmap identifies European technical and 
non-technical priorities in research and innovation to be 
addressed in the upcoming five years in order to deliver societal 
impact, develop skills and contribute to standardization. 

Keywords— big data; research roadmap; societal impact; 
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I. INTRODUCTION

ICT and particularly Internet of Things (IoT) solutions are 
now being intensively applied when addressing energy 
efficiency challenges: they range from already traditional 
systems performing automation to the ones addressing more 
innovative aspects, for example, behavioral change [1]. What is 
common in such systems is that the use of IoT solutions leads 
directly to the generation of Big Data of various kinds: 
building and transport data, environment data, context data, 
user data [2]. 

Consequently, Big Data, commonly characterized by its 
volume, velocity, variety, variability, and veracity [3], create a 
large societal impact in general, and in particular in the energy 
efficiency, sustainability and environment sectors. Issues to 
address comprise ethical considerations, data licensing, user 
data management, privacy and security, and open data 
publication among others. The use and misuse of IoT-
generated Big Data are on the rise, witnessed for example in 
the recent news headlines about ransomware, i.e. electrical 
appliances controlled from outside and not by their owners. A 
growing number of projects and initiatives are investigating the 
effects of the publication of IoT energy and environment data 
as open data. As an example, the OpenFridge project has been 
producing and publishing refrigerator data as open data, and 
studying the user perception and possible uses of such data [4]. 

To ensure an effective data value chain, it is highly 
important to investigate interdependencies between different 
data sets. For example, environment data is a natural crucial 
enabler for energy efficiency aims. On the one hand, it 
provides information of the status quo of our environment, on 
the basis of which ICT tools for energy efficiency can be built. 
On the other hand, the same kind of data are to be used later in 
the evaluations and accountability of the taken energy 
efficiency measures. 

The goal of the present roadmap is to provide incremental 
steps necessary to maximize the societal impact of big data 
research on environment, and its related influence on energy 
efficiency and sustainability. It is aligned with a broader, multi-
sectorial research [5] and policy [6] roadmap that has resulted 
from the Big data roadmap for cross-disciplinarY community 
for addressing societal Externalities (BYTE) Project, a three-
years European project involving the research, industry and 
civil society community, and with the Big Data Value Strategic 
Research and Innovation Agenda (BDV SRIA) that defines the 
overall goals and technical and non-technical priorities for the 
European Public Private Partnership on Big Data Value [7]. A 
community of research, civil society organizations and industry 
partners, has been built around the roadmap with the purpose 
of implementing its recommendations and best practices and 
further develop and update it. The community has initially 
focused on the environment, healthcare and smart city sectors. 

This paper is organized as follows. Section II presents the 
scope of the roadmap (research areas covered, time span and 
desired impact) and the methodologies used in the environment 
case study and roadmapping process. Section III summarizes 
the case study that forms the base of the requirements analysis 
for the roadmap, and Section IV outlines the research priorities, 
timeline and expected impact. We conclude in Section V with 
some remarks on the expected societal benefits. 

II. METHODOLOGY

A. Roadmap scope
In this paper, we cover research and innovation in five

technical areas—data management, data processing, data 
analysis, data protection, and data visualization—and present 
which topics have the highest priority to deliver a societal 
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impact to the energy and environmental sector in the upcoming 
5 years, as well as the required skills development and 
standardization efforts. Phaal, Farrukh and Probert [8] propose 
a T-Plan fast-start approach to technology roadmapping that is 
primarily developed for use from a company perspective, but 
can be customized for a multi-organizational use of a group of 
stakeholders, and it has been explicitly done so in the context 
of disruptive technological trends.

The roadmap has been developed following such 
multilayered approach [8], as sketched in Table 1. We defined 
four top layers, sometimes labeled as know-why, that 
encapsulate the organizational purpose and correspond to the 
externalities that the roadmap is intended to impact and 
potentiate (if positive) or diminish (if negative). The 
externalities are arranged in four areas and 18 coarse-grained 
externalities. In addition to these purpose layers, we also 
considered how this research impacts the energy efficiency and 
environment sector. This is part of a larger effort to include up 
to 18 sectorial layers [5] that represent the society pull in the 
roadmap. We further defined six bottom layers, also known as 
know-how, corresponding to the five-technical and the non-
technical research and innovation areas, or resources, that are 
to be addressed to meet the demands of the top layers, and that 
encode the technology push. Of these areas, topics in data 
analysis were not found a priority for a societal impact in the 
environment sector. Finally, the middle layers of the roadmap 
connect the purpose with the resources to deliver benefits to 
stakeholders, i.e. represents the know-what. This includes the 
skills development, standardization efforts and societal impact 
that the research and innovation actions contribute to. 

Table 1. Layer structure of the roadmap. 
Economic externalities 

Purpose 
(know-why) 

Social and ethical externalities 
Legal externalities 

Political externalities 
Societal impact Delivery 

(know-what) Skills development 
Standardization 

Data management 

Resources 
(know-how) 

Data processing 
Data analytics 

Data protection 
Data visualization 

Non-technical priorities 

B. Case study methodology
The roadmap is the culmination of a series of case studies,

analysis, expert focus groups and workshops conducted within 
the BYTE project [9] that resulted in an identification of the 
societal impacts of big data in seven European sectors: crisis 
informatics [10], culture, energy [11], environment, healthcare, 
smart cities and transport.

A total of 73 societal externalities related to big data usage 
were identified [12]. For this study, we extended the 
economical concept of externality to include not only 
economical but also social, ethical, legal and political benefits 
or costs on third-parties arising from big data practices, 

including potential activities, opportunities and risks. These 
externalities were classified by the pairs of stakeholders 
involved (public sector, private sector and citizens) and their 
main topic (business models, data sources and open data, 
policies and legal issues, social and ethical issues, and 
technologies and infrastructures).

Following qualitative research [13] and case study 
methodologies [14], the case studies findings were supported 
by multiple sources of evidence. To compile information about 
the main data sources, their uses and data flows and the 
challenges faced by the community in the environment case 
study, conducted in the context of a global effort for Earth 
Observation, we performed six semi-structured interviews with 
senior data scientists and IT engineers, participated in the 4th 
GEOSS Science & Technology Stakeholder Workshop to 
gather first-hand input from the community, and held a focus 
group in April 2015 in Vienna with 11 environment experts 
from academia and industry, selected to ensure the 
participation of individuals with expertise in environmental 
data, technology, computer science, standardization, the Space 
sector, as well as privacy and data protection, open data 
policies, relevant policy issues such as funding and innovation 
[15]. The data analysis was performed via the interviews and 
focus group transcripts, data coding, and themes identification 
and analysis [13], [16], [17]. 

C. Roadmapping
The 73 externalities were simplified to 18, and grouped in

four main areas in the context of a horizontal analysis across all 
seven sectors [18]:

Economic externalities: improved efficiency, innovation, 
changing business models, employment, and dependency on 
public funding.

Social and ethical externalities: improved efficiency and 
innovation, improved awareness and decision-making, 
participation, equality, discrimination, and trust.

Legal externalities: data protection and privacy, 
intellectual property rights, and liability and accountability.

Political externalities: private vs. public and non-profit 
sector, losing control to actors abroad, improved decision-
making and participation, and political abuse and surveillance.

Relevant research and innovation topics were then 
identified, mapped to their relevance to address societal 
externalities, and analyzed how they may impact society and 
contribute to standardization and skills development. Such 
relevance and mapping was assessed by a review of the case 
study reports [15] and complemented with an analysis of big 
data initiatives and external studies [7], [19]–[21] to include 
each significant contribution to the roadmap.

These results were validated in a dedicated research 
roadmapping workshop collocated with the European Data 
Forum 2016 in Eindhoven, with the assistance of 26 
participants from academia (11), SMEs (8), large companies 
(3), public organizations (3) and certification bodies (1), 
coming from 11 European countries (Austria, Belgium, 
Germany, Hungary, Ireland, Italy, the Netherlands, Norway, 
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Spain, Sweden, and the United Kingdom). The workshop also 
contributed to the prioritization and time-alignment of the 
topics. A second workshop with the big data community, 
collocated with the Big Data Value Association Summit 2016 
in València, validated the specific outcomes for the 
environment sector. 

III. ENVIRONMENT CASE STUDY 
The environment case study was conducted in the context 

of the Group on Earth Observation (GEO), a global-scale 
initiative for Earth Observation, involving more than 100 
national governments and in excess of 100 NGOs, for better 
understanding and controlling the environment, to benefit 
society through better-informed decision-making. GEO has 
been driving the interoperability of many thousands of 
individual Space-based, airborne and in situ stations for Earth 
Observations around the world for more than a decade. In this 
section, we focus on GEO’s data sources and uses, and the 
societal externalities present in the case study. A more detailed 
analysis of its technological aspects and data flows can be 
found in [15]. 

A. Data sources 
The case study revealed a large number of heterogeneous 

environmental data sources gathered from hundreds of 
countries, several thousand locations, ships, aircraft, land 
vehicles, satellites. The interlinking of data is seen as a source 
of new data itself providing new insights, especially when such 
linking is done with e.g. non-authoritative, unstructured data 
from social media. Data sources revealed by the interviewees 
are those with a Space (satellite data), in-situ component (rain 
gauges, buoys), or service component (models), or come from 
cadaster and utilities infrastructure data, open and public sector 
information data, archives, historical and archeological data, 
government agencies, time series of Earth Observation 
products (climate or weather data), linked data (e.g. that of the 
European Environment Agency, accessible through a SPARQL 
interface), web and social media (e.g. Twitter indications of 
earthquake extent), volunteered data from citizens and data 
from Internet of People (e.g. health monitoring) and Internet of 
Things. 

B. Data uses 
In the environment case study, big data shows up more as 

an incremental change rather than as a major shift. Data 
practices show up in all steps of the Big Data Value Chain 
[22]. The data acquisition comes mainly from data streams of 
national and international Space agencies and the remote 
sensing industry, and sensor networks from Government 
Environmental Agencies. Data analysis includes that 
performed by the community (e.g. combining and report on 
data for a municipality), cross-sectorial data analysis, 
information extraction and stream mining, and linked data and 
semantic analysis. The main activities within the data curation 
step are those dealing with interoperability, improving the 
quality, reliability, management and accessibility of data of 
importance to all fields of science and technology, and 
providing the required infrastructure to support open access 
and legal interoperability. Finally, on the data usage end, we 

found prediction of crisis and impact forecasting, data as a 
support for decision-making in huge processing demands 
caused by crisis, civil protection agencies and disaster 
management, in-use analytics, domain-specific usage (e.g. in 
agriculture, tourism or food industry), control (traffic, 
antiterrorism, policy enforcement and global monitoring of 
international agreements), and modeling and simulation. 

The main technical challenges observed were in resolution, 
data discovery and integration, transformation into actionable 
data, quality and trust of data sources, sustainability to provide 
continuous and long-term access to data, better interpretation 
of models, and finally lack of standards and the existence of 
industrial competitors that use standard violations to strengthen 
their position. 

C. Societal externalities of big data 
To assist the development of a research and innovation 

agenda with a societal impact, the effect of big data practices in 
the environment case study was examined. The outcomes show 
that most practices may produce both positive and negative 
impacts, and it is thus necessary to provide the necessary 
means for capturing positive externalities (e.g. providing social 
benefits) while reducing the negative ones (e.g. data misuse). 
We have classified such externalities as economic, social and 
ethical, legal, and political. 

It was broadly recognized that providing reliable 
environmental data has a strong impact on economies. This is 
especially relevant in Europe due to its leading role in the Earth 
Observation industry. Negative economic externalities of big 
data usage also showed up as a threat to traditional services 
(e.g. weather forecasting) and the potential increase of market 
inequalities (open access policies by public bodies that put the 
big private players at a competitive advantage), which may be 
alleviated by niche opportunities for new or small companies. 

Positive social and ethical impacts revolved around 
improved governance of environmental challenges and 
increase social awareness and participation. One example of 
positive externality is improved decision-making for 
sustainable development and disaster risk management, leading 
to progress to more sustainability, environmental safety and 
reduced disaster risk. Energy efficiency benefits also showed 
up in other related case studies [9], especially in sectors closer 
to the environment one such as the oil & gas and the smart city 
case studies. For example, big data was found to help reduce 
environmental impacts by the early detections of incidents and 
by monitoring equipment condition [11] and to better resource 
efficiency through targeted services in the smart city. 

Positive benefits were partially hindered by the fear of data 
abuse and privacy violation. Excessive trust in data-intensive 
applications was also highlighted as a negative implication that 
encourages overlooking fundamental qualitative aspects. 

Most legal externalities showed up as negative effects 
arising from the shortcoming of current legal frameworks on 
IPR, privacy, etc., which were amplified by the myriad of 
different legislations. The uptake of data-intensive applications 
was seen however as a positive effect prompting better 
informed and more precise legislation. 
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Finally, and from a political point of view, big data usage is 
expected to make political decisions more transparent and 
accountable. This comes at a risk of too much dependence on 
external sources, especially those from big players, who were 
perceived as imposing their commercial products as de facto 
standards and its associated lock-in. 

IV. RESEARCH PRIORITIES AND ROADMAP 
In this section, we present the research priorities to deliver 

a societal impact in the environment sector. The timeline to 
address these topics, together with their priority level as 
assessed by the community of stakeholders, are shown in Fig. 
1, and their expected societal impact in Fig. 2. The remaining 
of the section offers a description of such topics and impact. 

Data management priorities are measuring and assuring 
data quality [23], research into data provenance, control and 
IPR to minimize threats to intellectual property rights 
(including scholars' rights and contributions) [23], [24] and the 
development of the data-as-a-service model and paradigm to 
exploit new opportunities for economic growth (new products 
and services based on open access to big data) [12]. They also 
include scalable data access mechanisms [25]. It has to 
contribute to fix, on a technical level, the current lack of norms 
for data storage, processing and use. New models should be 
encouraged that diminish inequalities to data access between 
big data players and the rest. In the related smart city sector, 
increasing semantic interoperability for urban multimodal 
transportation, sensor, social media and user-generated data 
from e.g. citizens' smartphones would among other benefits 
enhance the energy efficiency of the city [23], [25]. 

Data processing priorities revolve around techniques and 
tools for processing real-time heterogeneous data that help 
gather public insight by identifying environmental trends and 
statistics [26], and open decentralized architectures that 
diminish storage costs and decrease the dependency on 
external data sources, platforms and services [24]. With the 
exponential increase of data storage needs, developing energy 
efficient mechanisms for storage and processing also came up 
as transversal research priority among all studied sectors [24]. 

In the area of data protection, the main priority is the 
development of pattern hiding mechanisms and privacy 
preserving mining algorithms to avoid discriminatory practices 
and targeted advertising [12], [19]. In data visualization, end 
user visualization and analytics need to ensure that 
manipulation of visual representations of data is avoided [23]. 
Moreover, new visualization for geospatial data should help 
understand and manage environmental data and enable data-
driven policy-making [27]. This has repercussions to sectors 
other than environment that will benefit from easy access to 
such reports. 

Finally, a number of non-technical priorities have also 
been identified. First is to establish and increase trust via better 
transparency and accountability of the public sector [25]. Also, 
the increasing awareness about privacy violations and ethical 
issues of big data can be met by developments in privacy-by-
design, security-by-design, anti-discrimination-by-design 
frameworks [19], [24], [25]. This will decrease the public 
reluctance to provide information (especially personal data), 

threats to data protection and personal privacy, and contribute 
to overcome the reduced innovation due to restrictive 
legislation [28]. Ethical issues should be investigated around 
sample bias and "sabotage" data practices, e.g. in social media 
fraud profiles willingly misinforming and possibly creating 
false data that affect the overall picture [27], [29]. New 
business models with closer linkages between research and 
innovation to capture opportunities for economic growth based 
on open access to big data have to be developed [7], [19], [23]. 
Examples put forward by the case study were the use of sea 
data for fishing purposes and weather data in the tourism 
industry. These new models may contribute to diminish the 
dominance of big market players. The environment sector 
shows great potential to encourage citizen research, which may 
take the form of crowd-computing, pervasive-computing, 
crowd-sourcing or independent research using open data and 
tools to e.g. increase data accuracy [25] or scale data curation 
[23]. To enable it, such tools have to be developed. This would 
increase citizen participation, produce safe and environment- 
friendly operations, deliver better models, measures and test 
about preparedness and resilience of communities, as well as of 
human behavior under crisis, and generally enhance quality of 
life. Furthermore, a strong participation of the public sector can 
help make data and services from the environment sector to 
become public goods available to all. 

The need for data skills have been repeatedly put forward 
across all sectors [19], [20], [30], [31]. Such skill profiles can 
be broadly classified in three categories: data scientists or deep 
analytical talents to analyze the data, data-intensive business 
experts or data-savvy managers to effectively consume it, and 
data-intensive engineers or supporting technology personnel 
[7], [30]. To deliver the outlined societal benefits, environment 
sector stakeholders agreed that the sector has a mainly a strong 
requirement of data scientists to cover new data-driven 
employment offerings that will result from the challenge of 
traditional non-digital services, such as traditional weather 
forecasting. Furthermore, technology and data standards need 
to be developed to enhance data-driven R&D. Finally, skill 
development should also be aimed at diminishing inequalities 
to data access and the data divide [12]. 

V. CONCLUDING REMARKS 
This paper has presented a research and innovation 

roadmap to address the societal externalities of the use big data 
in the environment sector. The environment data have a direct 
impact on energy efficiency, as they are usable in scenarios 
such as climate change observation and prediction, and 
analysis of the smart cities' structures and their development. 

 The roadmap is applied to a case study performed in the 
context of the Group on Earth Observation (GEO), a multi-
sectorial, global-scale initiative for Earth Observation, 
involving more than 100 national governments and over 100 
Participating Organizations. The case study was one of seven 
conducted in the framework of the BYTE project, a European- 
wide project to help Europe capture a greater share of the big 
data market by using big data responsibly. 
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Fig. 1. Research and innovation topics with an expected impact on the environment sector. Topics have been grouped in areas (top to bottom): data management, 
data processing, data protection, data visualization and non-technical priorities. Relevance has been assessed by workshop participants (from dark to lighter blue): 
top priority if all or almost all stakeholders agreed the topic to be of high priority; high priority if it was generally considered to be of high priority; medium 
priority if it was generally considered to be of medium priority; low priority otherwise. 

 

Fig. 2. Expected impact of the research and innovation topics in the environment sector. Relevance has been normalized by externality: darkest blue corresponds 
to the most relevant research in the externality. Research topics are grouped in the following areas (top to bottom): data management, data processing, data 
protection, data visualization, non-technical priorities. Externalities are grouped in four areas (left to right): economic, social and ethical, legal, and political. 
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The implementation of this roadmap is expected to deliver 
key social benefits in the areas of decision-making, data-driven 
innovations and novel business models, environmental 
benefits, and increased citizen participation, transparency and 
trust [9]. Improved decision-making comes especially from the 
use of data analytics for large volumes of environmental data 
to impact legislation and policies, as well as more efficiency in 
resource allocation. This would also have an impact on public 
health. Linking, integrating and processing heterogeneous data 
is expected to deliver new insights and data-driven innovations. 
This can be exemplified from the case study with the use of 
high-resolution satellite data and building information models 
to assess vulnerabilities. Big data usage is also envisaged to 
result in safer and more environmentally friendly operations, 
and enhance public health through better handling of 
environmental predictors (e.g. pollution levels). Finally, the 
environmental sector offers a highly favorable playground for 
crowdsourcing of data collection, and climate data portals are 
an opportunity to make policy-makers accountable, in 
particular for the implementation of energy efficiency and 
climate change objectives. 
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